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Abstract. Inferences about animal behavior from movement models typically rely solely on location
data, but auxiliary biotelemetry and environmental data are powerful and readily available resources for
incorporating much more behavioral realism. Integrating multiple data streams can not only reveal hidden
behaviors and ecological relationships that would otherwise be difficult or impossible to infer from
location data alone, but also facilitate more realistic path reconstruction that respects important ecological
features while bridging the information gaps that commonly arise due to measurement error or missing
data. Using the bearded seal (Erignathus barbatus), a benthic predator associated with Arctic sea ice, we
demonstrate how integrating location, dive activity, land cover, bathymetry, and sea ice data in a unified
modeling framework allowed us to identify novel behavior states, such as hauling out on seasonal sea ice
and those associated with competing foraging strategies (i.e., benthic vs. mid-water prey). By utilizing mul-
tiple data streams, ecologists can move beyond conventional two-state models (“foraging” and “transit”)
and address more interesting hypotheses about activity budgets, resource selection, and many other areas
of movement and behavioral ecology. The generality of our approach provides broad applicability to mar-
ine and terrestrial species, as well as many types of biotelemetry and environmental data.
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INTRODUCTION

Although animal movement is an incredibly
complex process influenced by many factors as
individuals respond to numerous stimuli, infer-
ences about animal behavior from movement
models still overwhelmingly rely on the analysis
of animal location data alone (e.g., Blackwell
2003, Morales et al. 2004, Jonsen et al. 2005, Gur-
arie et al. 2009, McClintock et al. 2012, Fleming
et al. 2015). When inference is based solely on
location data, however, it can be very difficult to
distinguish important movement behaviors. For
example, location data from periods of relative
inactivity (e.g., resting) can appear identical to

those from periods of intense area-restricted search
(e.g., foraging), and inference about such behaviors
based solely on horizontal trajectory can be mis-
leading (McClintock et al. 2013, Bestley et al. 2016).
Modern biotelemetry devices provide much

more than simple information about animal loca-
tion. They can now be equipped with various
“bio-logging” sensors that record detailed infor-
mation about animal behavior, physiology, and
the surrounding environment, such as tempera-
ture, heart rate, dive profiles, altitude, accelerome-
try, and proximity to conspecifics, competitors, or
predators. Publicly available repositories of remo-
tely sensed data (e.g., bathymetry, habitat type)
also provide easy access to information about
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environments animals inhabit. These auxiliary
biotelemetry and environmental data are power-
ful and readily available resources for incorporat-
ing much more ecological realism into animal
movement models.

Integrating animal location, biotelemetry, and
environmental data can reveal hidden behaviors
and ecological relationships that would other-
wise be difficult or impossible to infer from loca-
tion data alone. For example, the bearded seal
(Erignathus barbatus) is known as a benthic for-
ager whose life history in the Arctic is intricately
linked with sea ice, but the nature of that rela-
tionship and other ecological connections with
habitat is poorly understood. Given the inherent
difficulty of direct observation, biologists rely on
satellite telemetry as the primary source of
behavioral data for this species. However, key
components of bearded seal behavioral ecology,
such as benthic foraging or association with sea
ice, are not recorded by current satellite transmit-
ters. Rather, locations obtained during surface
breathing intervals or haul-out periods are typi-
cally recorded, often with substantial measure-
ment error. Basic two-state movement models
can often be fit to such location data, and these
typically include a “foraging” state characterized
by area-restricted search-type movement and a
“transit” state characterized by high speed and
directional persistence (Morales et al. 2004, Jon-
sen et al. 2005). Whether applied to marine or
terrestrial species, the typical “foraging” state in
a two-state model would include both foraging
and non-foraging “resting” behavior. Marine
satellite tags often record additional biotelemetry
information such as pressure sensor (i.e., dive
activity) and conductivity (i.e., wet/dry) data,
and while these data can be integrated to help
distinguish resting from foraging (e.g., McClin-
tock et al. 2013, 2015, Joy et al. 2015, Russell
et al. 2015), these data sources cannot be used for
inferences about different types of resting or for-
aging behavior. The incorporation of readily
accessible environmental data (e.g., sea ice cover,
land cover, sea floor depth) can help distinguish
these otherwise hidden behavioral states and
thereby facilitate greater ecological insight than
can conventional generic state assignments (e.g.,
“resting,” “foraging,” “transit”).

When explicitly accounted for in the movement
process model, biotelemetry and environmental

data can also facilitate more realistic reconstruction
of the latent movement path from location data
that are temporally irregular, infrequent, or subject
to measurement error. Obvious examples are bar-
riers to movement such as land and large bodies
of water for marine and terrestrial animals, respec-
tively, but such important ecological barriers are
typically ignored in analyses of animal movement
(e.g., Jonsen et al. 2005, Johnson et al. 2008, but see
Tremblay et al. 2009, McClintock et al. 2012, Brost
et al. 2015). Path reconstruction can also be
improved by incorporating biotelemetry data. For
example, dive depth (or altitude) or external tem-
perature can be used to constrain movements to
only those areas with compatible elevations or tem-
peratures, respectively (e.g., Tremblay et al. 2009).
While some recent animal movement studies

have begun to utilize both location and additional
sources of biotelemetry or environmental data to
identify additional behavioral states (e.g., McClin-
tock et al. 2013, Isojunno and Miller 2015, Joy
et al. 2015, Russell et al. 2015) or as covariates in
state transition probabilities (e.g., Morales et al.
2004, Bestley et al. 2013), inference remains lim-
ited to only a few movement behaviors. This is
largely because it is difficult to identify >2 biologi-
cally meaningful movement behaviors from rela-
tively few data streams (e.g., Morales et al. 2004,
McClintock et al. 2014), particularly in the pres-
ence of measurement error (e.g., Breed et al. 2013,
Silva et al. 2014). Other approaches have success-
fully linked animal movement to environmental
covariates (e.g., Forester et al. 2007, Hanks et al.
2011, Joy et al. 2015), but these do not explicitly
integrate distinct behavioral state relationships
with the environment and state-switching mecha-
nisms into the movement process.
Here, we develop a discrete-time, multistate

movement modeling framework for inferring
many movement behavior states and associated
activity budgets from animal location, bioteleme-
try, and environmental data. By incorporating all
data streams into a single movement model, our
approach facilitates the identification of novel
and ecologically meaningful behaviors that
otherwise could not be identified solely from any
particular data stream. The combined informa-
tion from all data streams can also help deal with
common challenges, such as location measure-
ment error, missing data, and environmental
boundaries, in reconstructing the movement
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path. After developing the model in the next sec-
tion, we provide an example using telemetry
data collected from bearded seals tagged in
coastal waters of Alaska, United States. Climate
change and other factors have prompted studies
on the influence of benthic communities and
environmental characteristics on bearded seal
benthic foraging ecology and sea ice use, but in
order to study these relationships, one must first
be able to identify when and where these activi-
ties occur from the limited data available. We
demonstrate how this can be accomplished by
integrating location, biotelemetry, and environ-
mental data in a unified inferential framework.

METHODS

As a benthic predator that relies on sea ice, the
bearded seal exhibits many behaviors that are not
directly observable or classifiable from standard
satellite telemetry data. These behaviors include
hauling out on ice, resting at sea, hauling out on
land, mid-water foraging (e.g., for pelagic prey),
benthic foraging, and transit (e.g., migration).
Some of these behaviors, such as resting at sea,
hauling out on land, or hauling out on ice, could
potentially be identified post hoc after fitting a
model that incorporates both location and dive
activity data (Johnson et al. 2008, Russell et al.
2015), but this is problematic with locations that
are temporally irregular, infrequent, or subject to
measurement error because the movement model
does not incorporate these important environ-
mental features (e.g., land, sea ice) when recreat-
ing the movement path. Other behaviors, such as
mid-water and benthic foraging, are more diffi-
cult to reliably infer post hoc regardless of the reg-
ularity, frequency, or accuracy of observed
locations. The challenge in identifying latent
behaviors such as benthic foraging lies not only in
estimating where the animal was, but also
whether the animal was diving to the sea floor.
This is but one of many examples where the expli-
cit integration of environmental data with loca-
tion and biotelemetry data can aid not only in
identifying hidden movement behavior states,
but also in the recreation of the movement path.

Bearded seal data
Between 2009 and 2012, we deployed Argos

(Service Argos 2013) satellite-linked tags on N = 7

bearded seals near Kotzebue, Alaska, United
States (Fig. 1). In addition to location acquisition,
the tags were equipped with pressure sensors for
recording dive information and conductivity sen-
sors for recording wet/dry information. Location
acquisition and data transmission were limited to
surface intervals (i.e., during haul-out periods or
surface breathing intervals). To cope with limited
transmission periods and bandwidth, the dive
data were summarized onboard and transmitted
as histograms of “dive depth,” “dive duration,”
and “time at depth” over 6-h intervals, where
each 6-h histogram was divided into 14 pre deter-
mined depth (m) or dive duration (min) bins (see
London 2016 for further details). Hourly percent
dry times were also transmitted. From these dive
activity data, we calculated the proportion of time
spent diving >4 m below the surface, the propor-
tion of dry time, and the number of dives at 6-h
intervals for use as data streams in our movement
process model. These 6-h time steps, chosen to
roughly correspond to “day,” “night,” and two
“crepuscular” periods, are common in longer tag
deployments for diving marine mammals due to
practical limitations associated with battery life
and data transmission.
In addition to location and biotelemetry data,

we utilized several environmental data sources
that are readily available from public repositories
to both help identify movement behavior states
and recreate the movement path. These included
land cover data for the region defined by the Ber-
ing, Chukchi, and Beaufort seas, sea ice concentra-
tion data, and bathymetry data (see Appendix S1).
Given the nature of the Argos platform, animal
behavior leading to limited or irregular exposure
to the satellites, and limited bandwidth for trans-
ferring data, the location data were subject to mea-
surement error and the dive activity data were
subject to missing or incomplete records. A larger
proportion of data were missing for seals tagged
during 2009 because extra (GPS location) data col-
lected only in that year consumed a portion of the
data uplinks to the Argos satellites. We therefore
require a model that accounts for these vagaries.

Movement process model
Building on the discrete-time, population-level

hierarchical model of McClintock et al. (2013),
we developed a six-state movement behavior
model for bearded seals, where movement
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behavior states and associated movement param-
eters were estimated from seven data streams.
These data streams included step length ðsn;tÞ,
bearing (/n,t), the proportion of time spent div-
ing >4 m below the surface ðwn;tÞ, the proportion
of dry time ðdn;tÞ, the number of dives to the sea
floor (i.e., “benthic dives”; en,t), the average pro-
portion of sea ice cover ðcn;tÞ, and the average
proportion of land cover ðln;tÞ for each 6-h time

step t = 1, . . ., Tn and individual n = 1, . . ., N.
Our goal was to identify and estimate activity
budgets to six distinct movement behavior states,
zn,t 2 {I, S, L, M, B, T}, where I denotes “hauled
out on ice,” S denotes “resting at sea,” L denotes
“hauled out on land,” M denotes “mid-water for-
aging,” B denotes “benthic foraging,” and T
denotes “transit,” based on the combined infor-
mation across all data streams. As a heuristic

Fig. 1. Observed locations for seven bearded seals obtained from Argos satellite telemetry tags deployed
between 2009 and 2012 near Kotzebue, Alaska, United States. The 53,069 locations (black dots) were subject to
measurement error and were only attainable during surface intervals. Darker shading offshore indicates deeper
sea floor depths (in meters).
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example of how the movement process model
works, suppose a particular 6-h time step exhib-
ited a short step length, no time spent diving
below 4 m, 100% dry time, and no dives to the
sea floor; if sea ice cover was >0% and land cover
was 0%, one could reasonably expect the animal
was hauled out on ice during this time step (state
I; Table 1).

For horizontal movement, we assumed step
length sn;tjzn;t ¼ i�Gammaðan;i=bn;i; bn;iÞ with
state-specific mean step length parameter
an,z > 0 and shape parameter bn,z > 0 for
z 2 fI; S; L;M;B;Tg. For bearing, we assumed
/n;tjzn;t ¼ i�wCauchyð/n;t�1; rn;iÞ, which is a
wrapped Cauchy distribution with state-specific
directional persistence parameter �1 < rn,z < 1.
Based on bearded seal movement behavior, we
expect average step length to be smaller for rest-
ing (states I, S, and L) and larger for transit. We
also expect directional persistence to be largest
for transit. As in McClintock et al. (2013), these
expected relationships were reflected in prior
constraints on the state-dependent parameters
(see Table 1; Appendix S1 for full details).

Although movement behavior state assign-
ment could be based solely on horizontal move-
ment characteristics (e.g., Morales et al. 2004,
Jonsen et al. 2005, McClintock et al. 2012), we
wished to incorporate the additional information
about behavior states provided by biotelemetry
(i.e., dive activity) and environmental (i.e.,
bathymetry, land cover, and sea ice concentra-
tion) data. Assuming independence between
data streams (but still conditional on state), we
incorporated wn,t, dn,t, en,t, cn,t, and ln,t into a joint

conditional likelihood whereby each data stream
contributes its own state-dependent component.
While for simplicity we assume independence of
data streams conditional on state, data streams
such as proportion of dive ðwn;tÞ and dry ðdn;tÞ
time could potentially be more realistically mod-
eled using multivariate distributions that
account for additional (state-dependent) correla-
tions.
For the data streams corresponding to propor-

tions (wn,t, dn,t, cn,t, ln,t), we assumed

qn;tjtq; dq; zn;t ¼ i�Beta tqi ; d
q
i

� �
,

where tqi and dqi are (state-dependent) shape
parameters for q 2 fw; d; c; lg and i 2 fI; S; L;M;
B;Tg. For the number of benthic dives ðen;tÞ, we
assumed

en;tjk; zn;t ¼ i�Poisson kið Þ,
where ki is a (state-dependent) rate or intensity
parameter. As with step length and bearing, we
imposed prior constraints on these distributions
based on the expected relationships of the states
and the data streams (see Table 1; Appendix S1).
Although critical for identifying benthic forag-

ing activity, en,t was not directly observable
because the exact locations and depths of the
seals during each 6-h time step were unknown.
We therefore calculated the number of benthic
foraging dives, defined as the number of dives to
depth bins with endpoints that included the sea
floor, based on the sea floor depths at the esti-
mated start and end locations for each time step.
Similarly, cn,t and ln,t were calculated based on
the average of the sea ice concentration and land

Table 1. Expected characteristics of six movement behavior states for a bearded seal movement model incorpo-
rating seven data streams.

Behavioral state

Horizontal trajectory

Dive Dry Benthic Ice LandStep length Directional persistence

“Hauled out on ice” (I) Shorter Lower Higher Lower Higher Lower
“Resting at sea” (S) Shorter Lower Lower Lower Lower Lower
“Hauled out on land” (L) Shorter Lower Higher Lower Lower Higher
“Mid-water foraging” (M) Higher Lower Lower
“Benthic foraging” (B) Higher Lower Higher
“Transit” (T) Longer Higher Higher Lower Lower

Notes: These data streams included horizontal trajectory (“step length” and “directional persistence”), the proportion of time
spent diving below 4 m (“dive”), the proportion of time spent dry (“dry”), and the number of benthic dives (“benthic”) during
each 6-h time step. The model incorporated environmental data on the proportion of sea ice and land cover in 25 9 25 km grid
cell(s) containing the start and end locations for each time step (“ice” and “land”), as well as bathymetry data to identify benthic
dives. Blank entries indicate no a priori relationships were assumed in the model.
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cover values, respectively, for the start and end
locations. We estimated start and end locations
for each time step by combining our movement
process model with an observation process
model similar to Jonsen et al. (2005) extended for
the Argos error ellipse (McClintock et al. 2015),
but, importantly, we also imposed constraints on
the predicted locations by prohibiting move-
ments inland and to areas where the sea floor
depth was shallower than the maximum
observed dive depth for each time step (see
Observation process model).

To model transitions between behavior states,
we assigned a first-order Markov categorical dis-
tribution, zn;tjw; zn;t�1 ¼ k�Categoricalðwk;I;wk;S;
wk;L;wk;M;wk;B;wk;TÞ, for k ¼ fI; S; L;M;B;Tg,
where wk,j is the transition probability from state
k at time t � 1 to state j at time t, and

P
j wk;j ¼ 1.

Thus, the conditional likelihood for our multi-
state, discrete-time movement process model
integrating location, biotelemetry, and environ-
mental data is

f s;/;w; d; e; c; l; zjhð Þ ¼
YN
n¼1

YTn

t¼1

f sn;tjh; zn;t
� �

� f /n;tjh; zn;t
� �� f wn;tjh; zn;t

� �
f dn;tjh; zn;t
� �

� f en;tjh; zn;t
� �

f cn;tjh; zn;t
� �

f ln;tjh; zn;t
� �

� f zn;tjh; zn;t�1
� �

where f() denotes a (conditional) probability den-
sity function and h is the set of all parameters.

Observation process model
For the observation process model, the data

consist of the observed locations ðxn;t;i; yn;t;iÞ for
individual n = 1, . . ., 7, time step t = 1, . . ., Tn,
and observation i ¼ 1; . . .; kn;t (where time steps
with kn,t = 0 have no observed locations). Similar
to Jonsen et al. (2005) and McClintock et al.
(2012, 2013), we assumed that individuals travel
in a straight line between times t � 1 and t. The
temporally irregular observed ðxn;t;i; yn;t;iÞ and
true ðlxn;t;i ; lyn;t;iÞ locations were then related to
the temporally regular locations ðXn;t;Yn;tÞ via:

lxn;t;i ¼ 1� jn;t;i
� �

Xn;t�1 þ jn;t;iXn;t

lyn;t;i ¼ 1� jn;t;i
� �

Yn;t�1 þ jn;t;iYn;t

where jn,t,i 2 (0,1] is the proportion of the time
interval between locations ðXn;t�1;Yn;t�1Þ and
ðXn;t;Yn;tÞ at which the ith observation was

obtained, and ðXn;0;Yn;0Þ is an initial (latent)
location for individual n.
Following McClintock et al. (2015), we account

for error resulting from location measurement
explained by the Argos error ellipse and that
attributable to outliers or discretization of the
movement path into temporally regular steps
using a bivariate t-distribution with c1 degrees of
freedom:

f xn;t;i; yn;t;i;Rn;t;ijh;Xn;0;Yn;0;/n; 1:t½ �; sn; 1:t½ �
� �

¼ C
�c1þ2

2

�
c1p
�c1
2

���Rn;t;i
��12
"
1þ 1

c1

 
xn;t;i � lxn;t;i
yn;t;i � lyn;t;i

!T

� R�1
n;t;i

xn;t;i � lxn;t;i
yn;t;i � lyn;t;i

 !#� c1þ2ð Þ
2

where

Rn;t;i ¼
r2
xn;t;i rxyn;t;i

rxyn;t;i r2
yn;t;i

 !
,

/n; 1:t½ � ¼ ð/n;1;/n;2; . . .;/n;tÞ; sn; 1:t½ � ¼ ðsn;1; sn;2; . . .;
sn;tÞ, and h again denotes the set of all model
parameters. Note that Σn,t,i is derived from the
components of the error ellipse (provided by
Argos) for each location. For the GPS-quality
locations obtained from the tags deployed in
2009, we used independent scaled t-distributions:

f ðxn;t;ijh;Xn;0;Yn;0;/n; 1:t½ �;sn; 1:t½ �Þ

¼
C c2þ1

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2pr

2
1

q
C c2

2

� � 1þ 1
c2

xn;t;i�lxn;t;i

� �2
r2
1

0
B@

1
CA

0
B@

1
CA

�c2þ1
2

f ðyn;t;ijh;Xn;0;Yn;0;/n; 1:t½ �;sn; 1:t½ �Þ

¼
C c2þ1

2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2pr

2
2

p
C c2

2

� � 1þ 1
c2

yn;t;i�lyn;t;i

� �2
r2
2

0
B@

1
CA

0
B@

1
CA

�c2þ1
2

with degrees of freedom term c2 and scale
parameters r2

1 and r2
2.

In order to maintain meaningful ecological
boundaries and consistency among the tempo-
rally regular locations ðXn;t;Yn;tÞ, dive data, and
environmental variables (sea floor depth, sea ice
concentration, and land cover), predicted loca-
tions were constrained to those with depths no
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shallower than the deepest dive bin for each time
step and with <100% land cover (thus forbidding
inland movements). Our observation process
model was therefore

f x;y;Rjh;X0;Y0;/;sð Þ¼
YN
n¼1

YTn

t¼1

I Xn;t;Yn;t
� �2Dn;t
� �

I Xn;t;Yn;t
� �2C
� �

�
"Ykn;t

i¼1

f xn;t;i;yn;t;i;Rn;t;ijh;Xn;0;Yn;0;/n; 1:t½ �;sn; 1:t½ �
� �

� 1� I xn;t;i;yn;t;i
� �2G
� �� �

þ f xn;t;i;yn;t;ijh;Xn;0;Yn;0;/n; 1:t½ �;sn; 1:t½ �
� �

� I xn;t;i;yn;t;i
� �2G
� �#

where IððXn;t;Yn;tÞ 2 Dn;tÞ and IððXn;t;Yn;tÞ 2 CÞ
are indicators for whether location ðXn;t;Yn;tÞ ¼
ðXn;t�1 þ sn;t cosð/n;tÞ;Yn;t�1 þ sn;t sinð/n;tÞÞ is in
the permitted depth ðDn;tÞ and land regions (C)
for time step t, and Iððxn;t;i; yn;t;iÞ 2 GÞ is an indi-
cator for whether observed location ðxn;t;i; yn;t;iÞ is
in the set of GPS-quality locations (G).

Model fitting and diagnostics
We fit our Bayesian state-space model, consist-

ing of both movement and observation process
components, using Markov chain Monte Carlo
(MCMC) methods. We assigned uninformative
priors whenever there were no a priori expecta-
tions about the relationships of the model

parameters and the movement behavior states
(see Appendix S1). Missing or incomplete dive
activity data ðwn;t; dn;t; or en;tÞ were assumed to
occur at random and imputed (conditional on
state zn,t) within each iteration of the MCMC algo-
rithm (see Appendix S2). We initialized six chains
from random starting values drawn from the
prior distributions. After initial pilot tuning and
burn-in, we ran the chains until the univariate
Gelman–Rubin potential scale reduction factor
(PSRF) for monitored parameters was <1.2 and
effective sample sizes exceeded 4000. This
required about 6 million iterations per chain,
where 1 million iterations for each parallel chain
required about 100 h using six cores of a 3.7-GHz
processor. Data and code can be found in
Data S1.

RESULTS

Based on posterior modes for state assign-
ments, we found these bearded seals spent 70%
of their deployment periods in the benthic forag-
ing state (B). They hauled out on ice (state I) and
rested at sea (state S) in roughly equal propor-
tions, but there was a clear seasonal component
in activity budgets among the hauled out on ice
(I), benthic foraging (B), and transit (T) states that
coincided with the summer retreat and winter
advance of sea ice in the Arctic (Table 2). All
seals exhibited intensive benthic foraging along
the continental shelves of the Chukchi or Beau-
fort seas as sea ice receded northward in the
summer. We found very little evidence of these

Table 2. Bearded seal activity budgets among six behavioral states (I = “hauled out on ice,” S = “resting at sea,”
L = “hauled out on land,” M = “mid-water foraging,” B = “benthic foraging,” and T = “transit”) from a dis-
crete-time, multistate movement model integrating animal location, biotelemetry, and environmental data.

State

Summer Autumn Winter Overall

Time LCI UCI Time LCI UCI Time LCI UCI Time LCI UCI

I 0.01 0.01 0.01 0.06 0.05 0.06 0.19 0.17 0.20 0.07 0.07 0.08
S 0.06 0.06 0.06 0.06 0.05 0.06 0.07 0.06 0.08 0.06 0.06 0.07
L 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01
M 0.04 0.04 0.04 0.04 0.03 0.04 0.05 0.04 0.06 0.04 0.04 0.04
B 0.80 0.80 0.81 0.70 0.69 0.71 0.57 0.56 0.58 0.70 0.70 0.71
T 0.09 0.08 0.09 0.14 0.14 0.15 0.12 0.11 0.13 0.12 0.11 0.12

Notes: There were seasonal differences in activity budgets between “summer” (from tagging in late June and early July to 30
September), “autumn” (1 October to 31 December), and “winter” (1 January until tag loss between February and April) that
coincided with the southern advance of winter sea ice in the Arctic. Activity budget summaries were calculated based on the
posterior mode of time spent in each state with lower (LCI) and upper (UCI) credible intervals based on 95% highest posterior
density. Individual seal activity budgets are included in Appendix S4.
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ice-associated seals hauling out on land, even
when near the coast during the largely ice-free
period in the summer. Interestingly, an adult
male briefly moved north of the Beaufort coastal
shelf in late July 2009 and was predicted to have
hauled out on the receding sea ice edge between
bouts of mid-water foraging in the deeper waters
of the Canada Basin (Fig. 2). We provide a
detailed animation of predicted movements and
state assignments for all seals relative to bathy-
metry and sea ice cover in Appendix S3.

As expected, the resting states (I, S, and L)
exhibited shorter step lengths, no directional

persistence, and lower proportions of each time
step diving >4 m below the surface based on
state-specific parameter estimates (Fig. 3; see
Appendix S4 for posterior summaries of all mon-
itored parameters). Both the mid-water foraging
(M) and transit (T) states exhibited longer step
lengths, lower proportions of dry time, and
higher proportions of diving >4 m below the sur-
face. Only the transit state exhibited strong direc-
tional persistence, but state M exhibited
moderate directional persistence for some indi-
viduals (Fig. 3). The benthic foraging (B) state
generally exhibited moderate step lengths, no

Fig. 2. Predicted locations and state assignments for an adult male bearded seal tag deployment from 25 June
2009 to 9 March 2010. The proportion of sea ice concentration cover in 25 9 25 km grid cells on 29 July 2009 indi-
cates our model identified a mid-water foraging trip to the deeper Canada Basin waters off the Beaufort Shelf
during which the animal hauled out on the northwardly receding sea ice edge. Uncertainty in predicted locations
is indicated by 95% normal error ellipses.
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directional persistence, lower proportions of dry
time, higher proportions of diving >4 m below
the surface, and considerably higher benthic dive
counts (posterior median for kB = 41.4; 95%
highest posterior density interval: 41.2–41.7). The
resting (kI = kS = kL = 9.7; 95% HPDI: 9.4–10.0)
and transit (kT = 15.0; 95% HPDI: 14.5–15.5)
states exhibited moderate benthic dive counts,
while the mid-water foraging state generally had

the lowest benthic dive counts (kM = 1.5; 95%
HPDI: 1.3–1.7; Fig. 3). The moderate benthic
dive counts for the resting and transit states
could be attributable to mid-interval state
switches, but there certainly could have been
opportunistic benthic foraging during transit.
There also could have been high-speed, direc-
tionally persistent benthic dives while transiting
in relatively shallow shelf waters.

Fig. 3. State-dependent probability densities for the step length, turning angle, dive time, dry time, number of
benthic dive, and sea ice concentration data streams. Estimates are based on posterior medians of population-
level parameters for N = 7 bearded seals.
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The parameters associated with state L exhib-
ited poor mixing among chains, but this was due
to the paucity of time steps assigned to the L state
and therefore of little consequence. For a single
seal, we also found somewhat poorer mixing for a
handful of the step length and bearing distribu-
tion parameters ðr4;I; a4;M; a4;B; a4;T ; b4;I; b4;BÞ that
exhibited PSRFs between 1.14 and 1.27. For all
other parameters, the point and upper confidence
limit estimates of the PSRFs never exceeded 1.08
(median = 1.003) and 1.19 (median = 1.009),
respectively (see Appendix S4).

DISCUSSION

We have demonstrated how animal location,
biotelemetry, and environmental data can be
integrated within a unified framework for infer-
ring more ecologically meaningful behaviors
and realistic movement paths. By integrating
additional sources of readily available data,
ecologists can move beyond the limited infer-
ences provided by conventional two-state move-
ment models (e.g., “foraging” and “transit”
sensu Morales et al. 2004, Jonsen et al. 2005). It
can also facilitate more realistic path reconstruc-
tion by respecting important features that influ-
ence movement such as land, water, altitude,
and habitat type. The bearded seal served as a
model species for our approach because of its
associations with sea ice and foraging behaviors
that are difficult to observe directly, but our
approach has broad applicability to many mar-
ine and terrestrial species, as well as to different
types of biotelemetry and environmental data.
For example, North American elk are primarily
grazers but are also known to browse when
grass-like plants are unavailable (Christianson
and Creel 2007); our approach could be used to
identify these different foraging behaviors while
linking them to specific habitat types and other
environmental factors (e.g., snow cover). Includ-
ing biotelemetry data from head or mandible
accelerometers as an additional data stream
could prove particularly useful for identifying
different foraging behaviors.

The ultimate objective of our bearded seal
analysis was to better understand the influence
of benthic communities and environmental char-
acteristics on bearded seal benthic foraging ecol-
ogy in the face of climate change and other

factors (M. F. Cameron, B. T. McClintock, and
A. L. Blanchard, unpublished manuscript). Using
the output from our model, M. F. Cameron, B. T.
McClintock, and A. L. Blanchard, (unpublished
manuscript) found that bearded seals avoided
fine grain sand and selected benthic foraging
habitat associated with numerous factors, includ-
ing higher relative densities of fishes such as
small sculpins and snailfishes, as well as certain
bivalves and crustaceans. While we are confident
in our ability to identify benthic foraging activity
for this purpose, we are less confident in our abil-
ity to distinguish “mid-water foraging” (state M)
from “transit” (state T) using the available data
streams. While the animals certainly could have
been foraging in mid-water, we are reluctant to
conclude time steps assigned to state M actually
constituted mid-water foraging and not a slightly
slower, less directionally persistent transit state
with fewer benthic dives. However, only 4% of
all time steps were assigned to state M (see
Table 2), and we were less concerned with this as
our goal was primarily to distinguish benthic for-
aging from other behaviors for a subsequent
investigation of bearded seal benthic resource
selection. In order to better distinguish mid-
water foraging from transit, we would likely
need to incorporate additional data streams (e.g.,
dive profile or accelerometer) or prior informa-
tion. Furthermore, our foraging states are not
indicative of success; additional data streams
would also be required to identify successful
foraging activity (e.g., stomach temperature).
When measurement error and missing data are

negligible, our framework can be easily imple-
mented using multivariate hidden Markov model
(HMM) fitting techniques (e.g., Bagniewska et al.
2013, Phillips et al. 2015, Zucchini et al. 2016).
However, a drawback of our approach is the need
to rely on computationally demanding techniques
for model fitting (e.g., MCMC) when accounting
for measurement error and/or missing data as was
necessary in our bearded seal application. Multi-
ple imputation provides a potentially more com-
putationally efficient approach to model fitting
while accounting for location measurement error
and missing data (Rubin 1987, Hooten et al. 2017).
For example, one could repeatedly draw move-
ment path realizations from a single-state move-
ment model that accommodates measurement
error and is relatively easy to fit (e.g., Johnson
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et al. 2008), and then apply our multistate move-
ment model to each track realization (potentially
imputing any missing biotelemetry or environ-
mental data) using the relatively fast and efficient
HMM algorithm. This multiple imputation
approach remains an avenue of ongoing research.

Our inclusion of six behavior states in the
bearded seal example was based on expert
knowledge of bearded seal biology, our ecologi-
cal questions of interest, and the available data.
However, selecting the most appropriate number
of states in (finite-state) HMMs can be challeng-
ing. Standard model selection techniques based
on classical information criteria (e.g., Akaike
Information Criterion, Bayesian Information Cri-
terion) or Bayesian approaches (e.g., Bayes fac-
tors, posterior model probabilities) can tend to
favor models with more states than is typically
desirable or biologically interpretable. Pohle
et al. (2017) suggest a practical approach to
addressing this issue that emphasizes study
objectives and expert knowledge in addition to
standard model selection and model checking
procedures.

We used a discrete-time movement model
because this made it straightforward to reconcile
multiple data streams collected at different time
scales with varying degrees of “missingness.”
This of course comes at the expense of discretiza-
tion error, a feature that is absent from continu-
ous-time models (McClintock et al. 2014). Path
reconstruction and state assignment could there-
fore potentially be further improved by extending
our approach to continuous time. As demon-
strated in our bearded seal example, activity bud-
gets can often be influenced by season and
environment. Other promising extensions there-
fore include modeling state transition probabili-
ties as a hidden semi-Markov process (Zucchini
et al. 2016) or as a function of biotelemetry or
environmental data.
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